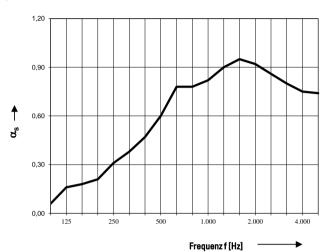
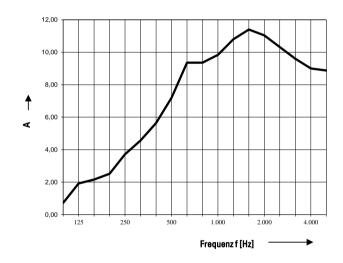
Bestimmung des Absorptionsgrades von Bauteilen im Prüfstand

Hersteller:pinta acoustic gmbhProduktbezeichnung:Float polarAuftraggeber:pinta acoustic gmbhPrüfbericht:1442-001-13Prüfinstitut:SG BauakustikPrüfdatum:08.05.2013

Beschreibung des Prüfgegenstandes:

Material: polar Format [mm]: 3000×1000 Akustikelementdicke [mm]: 20 Farbe: weiß


Bemerkung: Aus den gemessenen Nachhallzeiten T wurde die äquivalente Schallabsorptionsfläche A je Einzelabsorber


(Einlegeplatte) berechnet

Gemessen wurde: Nachhallzeit T
Alle anderen Werte wurden rechnerisch ermittelt.

Frequenz	Schallabsorp-	äquivalente
f	tionsgrad	Absorptions-
[Hz]	α_{s}	fläche A
100	0,06	0,72
125	0,16	1,92
160	0,18	2,16
200	0,21	2,52
250	0,31	3,72
315	0,38	4,56
400	0,47	5,64
500	0,60	7,20
630	0,78	9,36
800	0,78	9,36
1.000	0,82	9,84
1.250	0,90	10,80
1.600	0,95	11,40
2.000	0,92	11,04
2.500	0,86	10,32
3.150	0,80	9,60
4.000	0,75	9,00
5.000	0,74	8,88

NRC	0,69
Absorberklasse nach DIN EN ISO 11654	С
α_{w} nach DIN EN ISO 11654	0,60
Prüffläche	12,000 m ²
Abstand Element zum Prüfboden	0 mm
Lichtreflexionsgrad	n.b.
Baustoffklasse nach DIN 4102	B1
Baustoffklasse nach EN ISO 13501	B-s1-d0

 $\alpha_{\mbox{\tiny p}}$ / Frequenz [Hz] nach DIN EN ISO 11654

Frequenz	125	250	500	1.000	2.000	4.000
α_{p}	0,15	0,30	0,60	0,85	0,90	0,75

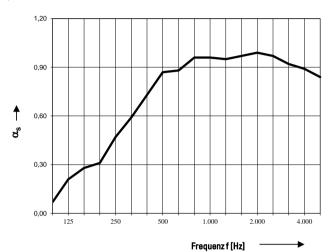
Alle angeführten Werte sind nach den zum Zeitpunkt der Erstellung dieses Datenblatts gültigen Richtlinien, Normen bzw. mathematischen Grundregeln auf zwei Nachkommastellen gerundet.

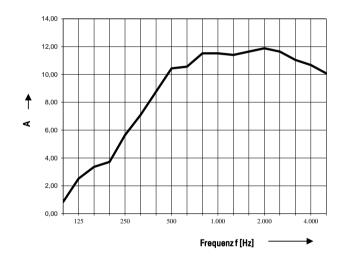
Bestimmung des Absorptionsgrades von Bauteilen im Prüfstand

Hersteller:pinta acoustic gmbhProduktbezeichnung:Float polarAuftraggeber:pinta acoustic gmbhPrüfbericht:1442-001-13Prüfinstitut:SG BauakustikPrüfdatum:08.05.2013

Beschreibung des Prüfgegenstandes:

Material: polar Format [mm]: 3000×1000 Akustikelementdicke [mm]: 20 Farbe: weiß


Bemerkung: Aus den gemessenen Nachhallzeiten T wurde die äquivalente Schallabsorptionsfläche A je Einzelabsorber


(Einlegeplatte) berechnet

Gemessen wurde: Nachhallzeit T
Alle anderen Werte wurden rechnerisch ermittelt.

Frequenz	Schallabsorp-	äquivalente
f	tionsgrad	Absorptions-
[Hz]	α_{s}	fläche A
100	0,07	0,84
125	0,21	2,52
160	0,28	3,36
200	0,31	3,72
250	0,47	5,64
315	0,59	7,08
400	0,73	8,76
500	0,87	10,44
630	0,88	10,56
800	0,96	11,52
1.000	0,96	11,52
1.250	0,95	11,40
1.600	0,97	11,64
2.000	0,99	11,88
2.500	0,97	11,64
3.150	0,92	11,04
4.000	0,89	10,68
5.000	0,84	10,08

NRC	0,84
Absorberklasse nach DIN EN ISO 11654	С
α _w nach DIN EN ISO 11654	0,75
Prüffläche	12,000 m²
Abstand Element zum Prüfboden	100 mm
Lichtreflexionsgrad	n.b.
Baustoffklasse nach DIN 4102	B1
Baustoffklasse nach EN ISO 13501	B-s1-d0

 $\alpha_{\mbox{\tiny p}}$ / Frequenz [Hz] nach DIN EN ISO 11654

Frequenz	125	250	500	1.000	2.000	4.000
α_{p}	0,20	0,45	0,85	0,95	1,00	0,90

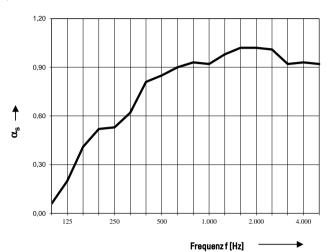
Alle angeführten Werte sind nach den zum Zeitpunkt der Erstellung dieses Datenblatts gültigen Richtlinien, Normen bzw. mathematischen Grundregeln auf zwei Nachkommastellen gerundet.

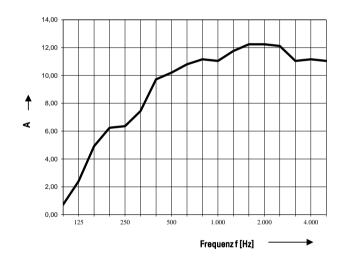
Bestimmung des Absorptionsgrades von Bauteilen im Prüfstand

Hersteller:pinta acoustic gmbhProduktbezeichnung:Float polarAuftraggeber:pinta acoustic gmbhPrüfbericht:1442-001-13Prüfinstitut:SG BauakustikPrüfdatum:08.05.2013

Beschreibung des Prüfgegenstandes:

Material: polar Format [mm]: 3000×1000 Akustikelementdicke [mm]: 20 Farbe: weiß


Bemerkung: Aus den gemessenen Nachhallzeiten T wurde die äquivalente Schallabsorptionsfläche A je Einzelabsorber


(Einlegeplatte) berechnet

Gemessen wurde: Nachhallzeit T
Alle anderen Werte wurden rechnerisch ermittelt.

Frequenz	Schallabsorp-	äquivalente
f	tionsgrad	Absorptions-
[Hz]	α_{s}	fläche A
100	0,06	0,72
125	0,20	2,40
160	0,41	4,92
200	0,52	6,24
250	0,53	6,36
315	0,62	7,44
400	0,81	9,72
500	0,85	10,20
630	0,90	10,80
800	0,93	11,16
1.000	0,92	11,04
1.250	0,98	11,76
1.600	1,02	12,24
2.000	1,02	12,24
2.500	1,01	12,12
3.150	0,92	11,04
4.000	0,93	11,16
5.000	0,92	11,04

NRC	0,86
Absorberklasse nach DIN EN ISO 11654	В
$lpha_{w}$ nach DIN EN ISO 11654	0,85
Prüffläche	12,000 m ²
Abstand Element zum Prüfboden	200 mm
Lichtreflexionsgrad	n.b.
Baustoffklasse nach DIN 4102	B1
Baustoffklasse nach EN ISO 13501	B-s1-d0

 $\alpha_{\textrm{\tiny p}}$ / Frequenz [Hz] nach DIN EN ISO 11654

Frequenz	125	250	500	1.000	2.000	4.000
α_{p}	0,20	0,55	0,85	0,95	1,00	0,90

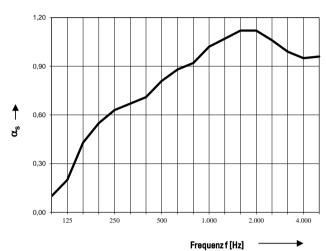
Alle angeführten Werte sind nach den zum Zeitpunkt der Erstellung dieses Datenblatts gültigen Richtlinien, Normen bzw. mathematischen Grundregeln auf zwei Nachkommastellen gerundet.

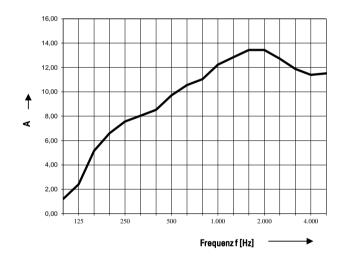
Bestimmung des Absorptionsgrades von Bauteilen im Prüfstand

Hersteller:pinta acoustic gmbhProduktbezeichnung:Float polarAuftraggeber:pinta acoustic gmbhPrüfbericht:1442-001-13Prüfinstitut:SG BauakustikPrüfdatum:08.05.2013

Beschreibung des Prüfgegenstandes:

Material: polar Format [mm]: 3000×1000 Akustikelementdicke [mm]: 20 Farbe: weiß


Bemerkung: Aus den gemessenen Nachhallzeiten T wurde die äquivalente Schallabsorptionsfläche A je Einzelabsorber


(Einlegeplatte) berechnet

Gemessen wurde: Nachhallzeit T
Alle anderen Werte wurden rechnerisch ermittelt.

_	0 1 11 1	
Frequenz	Schallabsorp-	äquivalente
f	tionsgrad	Absorptions-
[Hz]	α_{s}	fläche A
100	0,10	1,20
125	0,20	2,40
160	0,43	5,16
200	0,55	6,60
250	0,63	7,56
315	0,67	8,04
400	0,71	8,52
500	0,81	9,72
630	0,88	10,56
800	0,92	11,04
1.000	1,02	12,24
1.250	1,07	12,84
1.600	1,12	13,44
2.000	1,12	13,44
2.500	1,06	12,72
3.150	0,99	11,88
4.000	0,95	11,40
5.000	0,96	11,52

NRC	0,90
Absorberklasse nach DIN EN ISO 11654	В
$lpha_{w}$ nach DIN EN ISO 11654	0,85
Prüffläche	12,000 m²
Abstand Element zum Prüfboden	300 mm
Lichtreflexionsgrad	n.b.
Baustoffklasse nach DIN 4102	B1
Baustoffklasse nach EN ISO 13501	B-s1-d0

 $\alpha_{\mbox{\tiny p}}$ / Frequenz [Hz] nach DIN EN ISO 11654

Frequenz	125	250	500	1.000	2.000	4.000
α_{p}	0,25	0,60	0,80	1,00	1,00	0,95

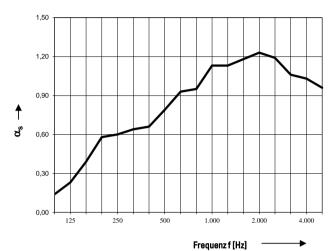
Alle angeführten Werte sind nach den zum Zeitpunkt der Erstellung dieses Datenblatts gültigen Richtlinien, Normen bzw. mathematischen Grundregeln auf zwei Nachkommastellen gerundet.

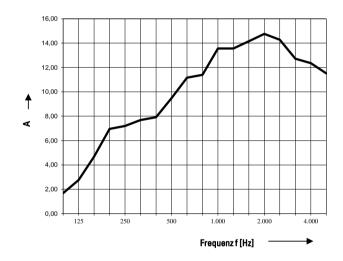
Bestimmung des Absorptionsgrades von Bauteilen im Prüfstand

Hersteller:pinta acoustic gmbhProduktbezeichnung:Float polarAuftraggeber:pinta acoustic gmbhPrüfbericht:1442-001-13Prüfinstitut:SG BauakustikPrüfdatum:08.05.2013

Beschreibung des Prüfgegenstandes:

Material: polar Format [mm]: 3000×1000 Akustikelementdicke [mm]: 20 Farbe: weiß


Bemerkung: Aus den gemessenen Nachhallzeiten T wurde die äquivalente Schallabsorptionsfläche A je Einzelabsorber


(Einlegeplatte) berechnet

Gemessen wurde: Nachhallzeit T
Alle anderen Werte wurden rechnerisch ermittelt.

Frequenz	Schallabsorp-	äquivalente
f	tionsgrad	Absorptions-
[Hz]	α_{s}	fläche A
100	0,14	1,68
125	0,23	2,76
160	0,39	4,68
200	0,58	6,96
250	0,60	7,20
315	0,64	7,68
400	0,66	7,92
500	0,79	9,48
630	0,93	11,16
800	0,95	11,40
1.000	1,13	13,56
1.250	1,13	13,56
1.600	1,18	14,16
2.000	1,23	14,76
2.500	1,19	14,28
3.150	1,06	12,72
4.000	1,03	12,36
5.000	0,96	11,52

NRC	0,92
Absorberklasse nach DIN EN ISO 11654	В
α_{w} nach DIN EN ISO 11654	0,85
Prüffläche	12,000 m ²
Abstand Element zum Prüfboden	500 mm
Lichtreflexionsgrad	n.b.
Baustoffklasse nach DIN 4102	B1
Baustoffklasse nach EN ISO 13501	B-s1-d0

 $\alpha_{\mbox{\tiny p}}$ / Frequenz [Hz] nach DIN EN ISO 11654

Frequenz	125	250	500	1.000	2.000	4.000
α_{p}	0,25	0,60	0,80	1,00	1,00	1,00

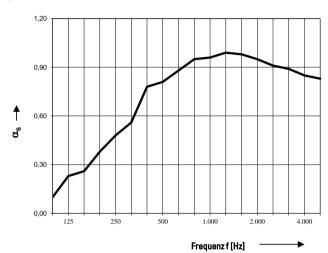
Alle angeführten Werte sind nach den zum Zeitpunkt der Erstellung dieses Datenblatts gültigen Richtlinien, Normen bzw. mathematischen Grundregeln auf zwei Nachkommastellen gerundet.

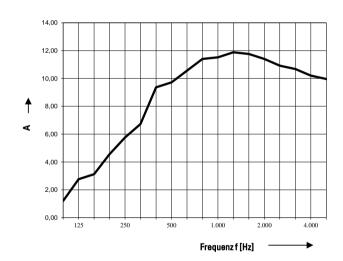
Bestimmung des Absorptionsgrades von Bauteilen im Prüfstand

Hersteller:pinta acoustic gmbhProduktbezeichnung:Float polarAuftraggeber:pinta acoustic gmbhPrüfbericht:1442-001-13Prüfinstitut:SG BauakustikPrüfdatum:08.05.2013

Beschreibung des Prüfgegenstandes:

Material: polar Format [mm]: 3000×1000 Akustikelementdicke [mm]: 40 Farbe: weiß


Bemerkung: Aus den gemessenen Nachhallzeiten T wurde die äquivalente Schallabsorptionsfläche A je Einzelabsorber


(Einlegeplatte) berechnet

Gemessen wurde: Nachhallzeit T
Alle anderen Werte wurden rechnerisch ermittelt.

Frequenz	Schallabsorp-	äquivalente
f	tionsgrad	Absorptions-
[Hz]	$lpha_{s}$	fläche A
100	0,10	1,20
125	0,23	2,76
160	0,26	3,12
200	0,38	4,56
250	0,48	5,76
315	0,56	6,72
400	0,78	9,36
500	0,81	9,72
630	0,88	10,56
800	0,95	11,40
1.000	0,96	11,52
1.250	0,99	11,88
1.600	0,98	11,76
2.000	0,95	11,40
2.500	0,91	10,92
3.150	0,89	10,68
4.000	0,85	10,20
5.000	0,83	9,96

NRC	0,83
Absorberklasse nach DIN EN ISO 11654	С
$lpha_{w}$ nach DIN EN ISO 11654	0,75
Prüffläche	12,000 m ²
Abstand Element zum Prüfboden	0 mm
Lichtreflexionsgrad	n.b.
Baustoffklasse nach DIN 4102	B1
Baustoffklasse nach EN ISO 13501	B-s2-d0

 $\alpha_{\text{\tiny p}}$ / Frequenz [Hz] nach DIN EN ISO 11654

Frequenz	125	250	500	1.000	2.000	4.000
α_{p}	0,20	0,45	0,80	0,95	0,95	0,85

Alle angeführten Werte sind nach den zum Zeitpunkt der Erstellung dieses Datenblatts gültigen Richtlinien, Normen bzw. mathematischen Grundregeln auf zwei Nachkommastellen gerundet.

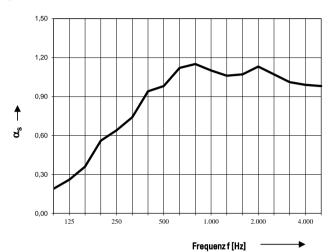
Bestimmung des Absorptionsgrades von Bauteilen im Prüfstand

Hersteller:pinta acoustic gmbhProduktbezeichnung:Float polarAuftraggeber:pinta acoustic gmbhPrüfbericht:1442-001-13Prüfinstitut:SG BauakustikPrüfdatum:08.05.2013

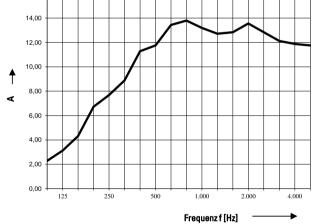
Beschreibung des Prüfgegenstandes:

Material: polar Format [mm]: 3000×1000 Akustikelementdicke [mm]: 40 Farbe: weiß

Bemerkung: Aus den gemessenen Nachhallzeiten T wurde die äquivalente Schallabsorptionsfläche A je Einzelabsorber


(Einlegeplatte) berechnet

Gemessen wurde: Nachhallzeit T


Alle anderen Werte wurden rechnerisch ermittelt.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Frequenz	Schallabsorp-	äquivalente	
100 0,19 2,28 125 0,26 3,12 160 0,36 4,32 200 0,56 6,72 250 0,64 7,68 315 0,74 8,88 400 0,94 11,28 500 0,98 11,76 630 1,12 13,44 800 1,15 13,80 1.000 1,10 13,20 1.250 1,06 12,72 1.600 1,07 12,84 2.000 1,13 13,56 2.500 1,07 12,84 3.150 1,01 12,12 4.000 0,99 11,88	f	tionsgrad	Absorptions-	
125 0,26 3,12 160 0,36 4,32 200 0,56 6,72 250 0,64 7,68 315 0,74 8,88 400 0,94 11,28 500 0,98 11,76 630 1,12 13,44 800 1,15 13,80 1.000 1,10 13,20 1.250 1,06 12,72 1.600 1,07 12,84 2.000 1,13 13,56 2.500 1,07 12,84 3.150 1,01 12,12 4.000 0,99 11,88	[Hz]	α_{s}	fläche A	
160 0,36 4,32 200 0,56 6,72 250 0,64 7,68 315 0,74 8,88 400 0,94 11,28 500 0,98 11,76 630 1,12 13,44 800 1,15 13,80 1.000 1,10 13,20 1.250 1,06 12,72 1.600 1,07 12,84 2.500 1,07 12,84 3.150 1,01 12,12 4.000 0,99 11,88	100	0,19	2,28	
200 0,56 6,72 250 0,64 7,68 315 0,74 8,88 400 0,94 11,28 500 0,98 11,76 630 1,12 13,44 800 1,15 13,80 1.000 1,10 13,20 1.250 1,06 12,72 1.600 1,07 12,84 2.000 1,13 13,56 2.500 1,07 12,84 3.150 1,01 12,12 4.000 0,99 11,88	125	0,26	3,12	
250 0,64 7,68 315 0,74 8,88 400 0,94 11,28 500 0,98 11,76 630 1,12 13,44 800 1,15 13,80 1.000 1,10 13,20 1.250 1,06 12,72 1.600 1,07 12,84 2.000 1,13 13,56 2.500 1,07 12,84 3.150 1,01 12,12 4.000 0,99 11,88	160	0,36	4,32	
315 0,74 8,88 400 0,94 11,28 500 0,98 11,76 630 1,12 13,44 800 1,15 13,80 1.000 1,10 13,20 1.250 1,06 12,72 1.600 1,07 12,84 2.000 1,13 13,56 2.500 1,07 12,84 3.150 1,01 12,12 4.000 0,99 11,88	200	0,56	6,72	
400 0,94 11,28 500 0,98 11,76 630 1,12 13,44 800 1,15 13,80 1.000 1,10 13,20 1.250 1,06 12,72 1.600 1,07 12,84 2.000 1,13 13,56 2.500 1,07 12,84 3.150 1,01 12,12 4.000 0,99 11,88	250	0,64	7,68	
500 0,98 11,76 630 1,12 13,44 800 1,15 13,80 1.000 1,10 13,20 1.250 1,06 12,72 1.600 1,07 12,84 2.000 1,13 13,56 2.500 1,07 12,84 3.150 1,01 12,12 4.000 0,99 11,88	315	0,74	8,88	
630 1,12 13,44 800 1,15 13,80 1.000 1,10 13,20 1.250 1,06 12,72 1.600 1,07 12,84 2.000 1,13 13,56 2.500 1,07 12,84 3.150 1,01 12,12 4.000 0,99 11,88	400	0,94	11,28	
800 1,15 13,80 1.000 1,10 13,20 1.250 1,06 12,72 1.600 1,07 12,84 2.000 1,13 13,56 2.500 1,07 12,84 3.150 1,01 12,12 4.000 0,99 11,88	500	0,98	11,76	
1.000 1,10 13,20 1.250 1,06 12,72 1.600 1,07 12,84 2.000 1,13 13,56 2.500 1,07 12,84 3.150 1,01 12,12 4.000 0,99 11,88	630	1,12	13,44	
1.250 1,06 12,72 1.600 1,07 12,84 2.000 1,13 13,56 2.500 1,07 12,84 3.150 1,01 12,12 4.000 0,99 11,88	800	1,15	13,80	
1.600 1,07 12,84 2.000 1,13 13,56 2.500 1,07 12,84 3.150 1,01 12,12 4.000 0,99 11,88	1.000	1,10	13,20	
2.000 1,13 13,56 2.500 1,07 12,84 3.150 1,01 12,12 4.000 0,99 11,88	1.250	1,06	12,72	
2.500 1,07 12,84 3.150 1,01 12,12 4.000 0,99 11,88	1.600	1,07	12,84	
3.150 1,01 12,12 4.000 0,99 11,88	2.000	1,13	13,56	
4.000 0,99 11,88	2.500	1,07	12,84	
	3.150	1,01	12,12	
5.000 0,98 11,76	4.000	0,99	11,88	
	5.000	0,98	11,76	

NRC	0,99
Absorberklasse nach DIN EN ISO 11654	А
α_{w} nach DIN EN ISO 11654	0,95
Prüffläche	12,000 m²
Abstand Element zum Prüfboden	100 mm
Lichtreflexionsgrad	n.b.
Baustoffklasse nach DIN 4102	B1
Baustoffklasse nach EN ISO 13501	B-s2-d0

 $\alpha_{\mbox{\tiny p}}$ / Frequenz [Hz] nach DIN EN ISO 11654

Frequenz	125	250	500	1.000	2.000	4.000
α_{p}	0,25	0,65	1,00	1,00	1,00	1,00

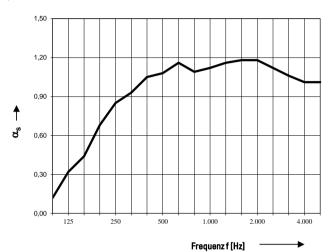
Alle angeführten Werte sind nach den zum Zeitpunkt der Erstellung dieses Datenblatts gültigen Richtlinien, Normen bzw. mathematischen Grundregeln auf zwei Nachkommastellen gerundet.

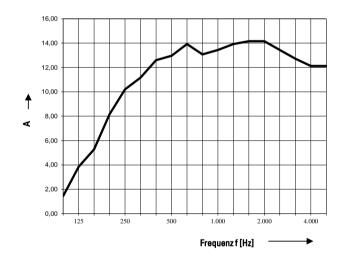
Bestimmung des Absorptionsgrades von Bauteilen im Prüfstand

Hersteller:pinta acoustic gmbhProduktbezeichnung:Float polarAuftraggeber:pinta acoustic gmbhPrüfbericht:1442-001-13Prüfinstitut:SG BauakustikPrüfdatum:08.05.2013

Beschreibung des Prüfgegenstandes:

Material: polar Format [mm]: 3000×1000 Akustikelementdicke [mm]: 40 Farbe: weiß


Bemerkung: Aus den gemessenen Nachhallzeiten T wurde die äquivalente Schallabsorptionsfläche A je Einzelabsorber


(Einlegeplatte) berechnet

Gemessen wurde: Nachhallzeit T
Alle anderen Werte wurden rechnerisch ermittelt.

Frequenz	Schallabsorp-	äquivalente
f	tionsgrad	Absorptions-
[Hz]	α_{s}	fläche A
100	0,12	1,44
125	0,32	3,84
160	0,44	5,28
200	0,68	8,16
250	0,85	10,20
315	0,93	11,16
400	1,05	12,60
500	1,08	12,96
630	1,16	13,92
800	1,09	13,08
1.000	1,12	13,44
1.250	1,16	13,92
1.600	1,18	14,16
2.000	1,18	14,16
2.500	1,12	13,44
3.150	1,06	12,72
4.000	1,01	12,12
5.000	1,01	12,12

NRC	1.08
	1,00
Absorberklasse	Δ
nach DIN EN ISO 11654	, ,
α_{w}	1.00
nach DIN EN ISO 11654	1,00
Prüffläche	12,000 m²
Abstand Element	200
zum Prüfboden	200 mm
Lichtreflexionsgrad	n.b.
Licita enexionagrad	11.0.
Baustoffklasse	B1
nach DIN 4102	БІ
Baustoffklasse	B-s2-d0
nach EN ISO 13501	B-82-00

 $\alpha_{\mbox{\tiny p}}$ / Frequenz [Hz] nach DIN EN ISO 11654

Frequenz	125	250	500	1.000	2.000	4.000
α_{p}	0,30	0,80	1,00	1,00	1,00	1,00

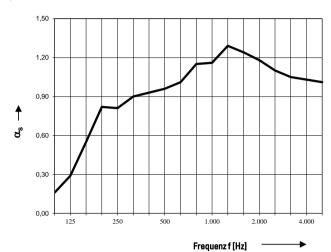
Alle angeführten Werte sind nach den zum Zeitpunkt der Erstellung dieses Datenblatts gültigen Richtlinien, Normen bzw. mathematischen Grundregeln auf zwei Nachkommastellen gerundet.

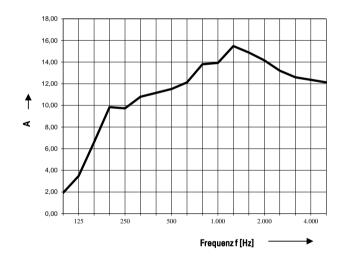
Bestimmung des Absorptionsgrades von Bauteilen im Prüfstand

Hersteller:pinta acoustic gmbhProduktbezeichnung:Float polarAuftraggeber:pinta acoustic gmbhPrüfbericht:1442-001-13Prüfinstitut:SG BauakustikPrüfdatum:08.05.2013

Beschreibung des Prüfgegenstandes:

Material: polar Format [mm]: 3000×1000 Akustikelementdicke [mm]: 40 Farbe: weiß


Bemerkung: Aus den gemessenen Nachhallzeiten T wurde die äquivalente Schallabsorptionsfläche A je Einzelabsorber


(Einlegeplatte) berechnet

Gemessen wurde: Nachhallzeit T
Alle anderen Werte wurden rechnerisch ermittelt.

Frequenz	Schallabsorp-	äquivalente	
f	tionsgrad Absorptions		
[Hz]	α_{s}	fläche A	
100	0,16	1,92	
125	0,29	3,48	
160	0,55	6,60	
200	0,82	9,84	
250	0,81	9,72	
315	0,90	10,80	
400	0,93	11,16	
500	0,96	11,52	
630	1,01	12,12	
800	1,15	13,80	
1.000	1,16	13,92	
1.250	1,29	15,48	
1.600	1,24	14,88	
2.000	1,18	14,16	
2.500	1,10	13,20	
3.150	1,05	12,60	
4.000	1,03	12,36	
5.000	1,01	12,12	

NRC	1,06	
Absorberklasse nach DIN EN ISO 11654	А	
$lpha_{w}$ nach DIN EN ISO 11654	1,00	
Prüffläche	12,000 m ²	
Abstand Element zum Prüfboden	300 mm	
Lichtreflexionsgrad	n.b.	
Baustoffklasse nach DIN 4102	B1	
Baustoffklasse nach EN ISO 13501	B-s2-d0	

 $\alpha_{\mbox{\tiny p}}$ / Frequenz [Hz] nach DIN EN ISO 11654

Frequenz	125	250	500	1.000	2.000	4.000
α_{p}	0,35	0,85	0,95	1,00	1,00	1,00

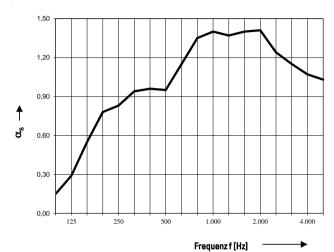
Alle angeführten Werte sind nach den zum Zeitpunkt der Erstellung dieses Datenblatts gültigen Richtlinien, Normen bzw. mathematischen Grundregeln auf zwei Nachkommastellen gerundet.

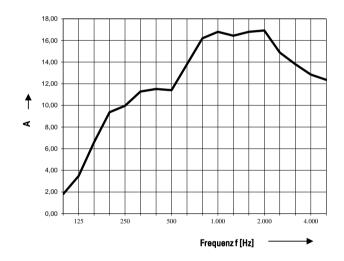
Bestimmung des Absorptionsgrades von Bauteilen im Prüfstand

Hersteller:pinta acoustic gmbhProduktbezeichnung:Float polarAuftraggeber:pinta acoustic gmbhPrüfbericht:1442-001-13Prüfinstitut:SG BauakustikPrüfdatum:08.05.2013

Beschreibung des Prüfgegenstandes:

Material: polar Format [mm]: 3000×1000 Akustikelementdicke [mm]: 40 Farbe: weiß


Bemerkung: Aus den gemessenen Nachhallzeiten T wurde die äquivalente Schallabsorptionsfläche A je Einzelabsorber


(Einlegeplatte) berechnet

Gemessen wurde: Nachhallzeit T
Alle anderen Werte wurden rechnerisch ermittelt.

Frequenz	Schallabsorp-	äquivalente		
f	tionsgrad	Absorptions-		
[Hz]	α_{s}	fläche A		
100	0,15	1,80		
125	0,29	3,48		
160	0,55	6,60		
200	0,78	9,36		
250	0,83	9,96		
315	0,94	11,28		
400	0,96	11,52		
500	0,95	11,40		
630	1,15	13,80		
800	1,35 16,20			
1.000	1,40	16,80		
1.250	1,37	16,44		
1.600	1,40	16,80		
2.000	1,41	16,92		
2.500	1,24	14,88		
3.150	1,15	13,80		
4.000	1,07	12,84		
5.000	1,03	12,36		

NRC	1,18
Absorberklasse nach DIN EN ISO 11654	А
α _w nach DIN EN ISO 11654	1,00
Prüffläche	12,000 m²
Abstand Element zum Prüfboden	500 mm
Lichtreflexionsgrad	n.b.
Baustoffklasse nach DIN 4102	B1
Baustoffklasse nach EN ISO 13501	B-s2-d0

 $\alpha_{\text{\tiny p}}$ / Frequenz [Hz] nach DIN EN ISO 11654

Frequenz	125	250	500	1.000	2.000	4.000
α_{p}	0,35	0,85	1,00	1,00	1,00	1,00

Alle angeführten Werte sind nach den zum Zeitpunkt der Erstellung dieses Datenblatts gültigen Richtlinien, Normen bzw. mathematischen Grundregeln auf zwei Nachkommastellen gerundet.

